

# Bicycling and Individually Targeted Prevention



#### Dana Maňasková mudr.

Centrum Prevence 200 MUDr. René Vlasák

&

Doc. RNDr. Omar Šerý, PhD

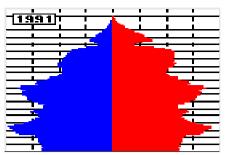
## Vision - cycling traffic accidents

1) Cataract – 2nd most frequent cause of senior blindness (Topinková, 2005)

Amiodarone, corticosteroids, tetracyclines, salts of gold, chlorpromazine, pravastatin, inborn predispositions, eye injuries, + age, sun radiance, smoking, diabetes mellitus, chronic inflammation, oxidative stress, other metabolic disorders.

- 2) Visual field horizontal 170° youngs, 140° 50 years glaucoma, retinal defects, etc. major cause of automobile accidents of seniors 2x ↑ collision rates (Hills BL., 1980)
- 3) Age related macular degeneration 11% in 65-74 years frequent causes of senior blindness (Topinková, 2005)
- 4) Other







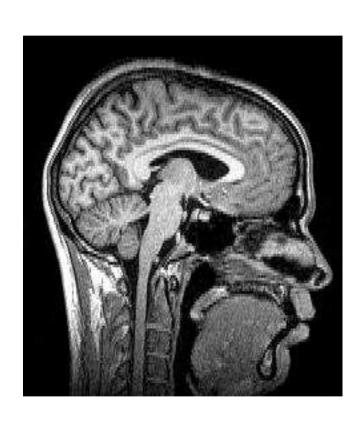



# **Cognitive skills**

- Drop of vigilance, Looked-but-failed-to-see
   + experienced drivers, + another car present (Herslund, 2003)
- 2) 37% of collisions no one realized / in time speed 27% drivers, 24% cyclist tried to advert the accident (Räsänen, 1998)
- 3) Unjustified expectations about the behaviour of others <a>↑</a>.
- 4) Alcohol, Medicaments, Drugs, Genetics
- Health conditions (dehydration, hypoglycaemia, hypothyreosis, neurological, cardiovascular and blood disorders, dementias, etc.)



# Seniors X Speed


- 1) Crashes: rear-end and ran-off-road
  - + failed to see / detect the other vehicle
  - + right-of-way crashes, assessment of adequate time to proceed
- 2) Medicaments: 89% in 65-74 years tricycle AD, barbiturates, diazepams, chlordiazepoxid, reserpin, methyldopa, levodopa, bromcriptin, pentazocin, meperidin, indometacin, propranolol, disopiramind, metoclopramid, spasmolytics, antipsychotics, anodynes, antihistaminics, H-2 blockers, theophyllin, some antibiotics, digoxin
- 3) Dementia: 3-7% population 65 years +
- 4) Fatality of TBI: 20% in children, 71% in 75years + (Javouhey, 1969)
  ↑ fragility bone & brain , ↓homoeostasis, ↓hypoxia tolerance, ↑ extend of brain injury, ↑ intracerebral bleeding
- 5) Falls = leading cause of TBI 4 years -, 75 years+ (NCIPC, 2007) 20-30% of the seniors aged 65-69 50% of seniors above 85 years sustain an injury / 1 year because of a fall (osteoporotic fracture, traumatic brain injury etc.) (Topinková, 2005)

# **Bicycling injury**

- 1) 16m/s (57,6 km/h) 50% risk of death
- 2) Head trauma hospitalised bicyclists are 20 times more likely to die (Haileyesus, 2007) and represent almost 100% (Mraček, 2004), 90% (Soori, 2002), 80% (Henderson, 1995), 75% (Frič, 2007) Of cycling fatalities
- 3) Fractures
- 4) Injury of soft tissues

## **Traumatic brain injury (TBI)**

- 1) Brain contusion
- 2) Diffuse axonal injury- DAI
- 3) Intracranial bleeding
  - Epidural haematoma
  - Subdural haemorrhage
  - Subarachnoidal bleeding
  - Intracerebral bleeding
- 4) Consequences of head injury





## Brain contusion – few points /!\



- 1) Sympathic activation hearth arrhythmias! (seniors after IM, WPW syndrome etc.)
- 2) EEG  $\triangle$  in retic. form. (activating upper mid brain)  $\leftarrow$  rotation
- 3) ATP depletion + X haematoenc. barrier  $\rightarrow$  + neuronal death oxidation stress  $\rightarrow$  x mitochondrial DNA  $\rightarrow$  - ATP reserve:

senior age, ↓ lung, heart, blood functions → mild hypoxia, infections, alcoholism, smoking, X-ray th., chemotherapy, resuscitation, sepsis, intoxications, MTCH inborn mutations

- 4) Microbleedings, bleedings
- 5) Predispositions to Alzheimer and other neuropsychiatric disorders





## Spontaneous brain haemorrhage: /!\



- **1)** ↑**BP:** metabolic, cocaine, amphetamines, atrial fibrillation, ↑Na
- 2) Art. degener.: amyloidal, atherosclerosis, macro- and microangiopathias, †cholesterolemia, obesity, etc.
- 3) X collagen: Ehlers-Dunlos syndrome, osteogenesis imperfecta, aneurysms, glucocorticoids, \vitamin C, \protein, chemotherapy, actinotherapy
- 4) Genetics: brain haemorrhage in the relatives
- 5) Inflamation: acute inf., brain infec., syphilis, autoimm. dis.
- 6) Thrombocytopenia: acute HIV, hep. C (Karibe, 2001), autoimmunity, chinine, sulphonamides, heparins, cytostatics, salts of gold, diclofenac, sulfathiazole, co-trimoxazól, vancomicine, piperacilin, prokainamid, methyldopa, thiazid diuretics, carbamazepine, ranitidine, estrogens, danazol, etc.
- 7) ↓Prothrombine: surgery, ↓ vitamin K, antibiotics, cumarine derivates, acetylsalicylates, heparins, ticlopidine, Ilb/Ila inhibitors
- 8) Others: \( \) function of thrombocytes, haemophilias, Smoking (3 h!) (Kalita, 2006), hypoxia (lung or hearth diseases), JB12, dehydration, alcohol



## Intracranial bleeding

- 1) Subdural haemorrhage whiplash mechanism seniors vessel fragility, degeneration, dehydration, brain atrophy, anticoagulant therapy, etc.

  Acute / Subacute (weeks) / Chronic (20-30% recall no head injury)
- 2) Subarachnoidal bleeding (SAH) head deceleration hypertension, smoking, family history (4% risk), age 40 60, women (60%), African Americans, Aneurysm rupture risk—size, smokig, alcohol (Anderson, 2007), Wider subarachnoidal space children (constitutional), seniors (dehydration, brain atrophy)
- 3) Intracerebral bleeding rotational acceleration of the hemispheres basal ganglia and surrounding structures seniors (vascular amyloidosis), impaired blood coagulation Fatal bleeding can occur even several days after the injury

#### Children

1) EU 15-24% < 18 years 59% bicycle fatalities < 20 years (Cooke, 1993)



- 2) BRAIN: speed assessment, protective reflexes
  - + evaluation mistakes,+ reacting times

#### 3) BRAIN INJURY:

- + skull elastic deformation, + diffuse injury
- + subarachnoidal space
- limit of ICP (10 mm Hg compared to 15mmHg)
- + risk of coagulopathy
- + early post-traumatic seizures

# TBI minimal consequences

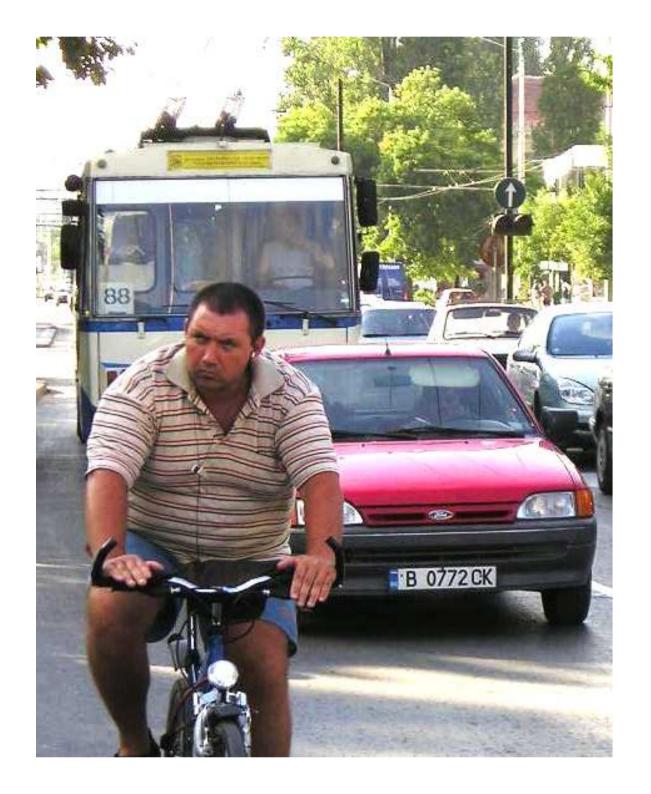


- **1) TBI frontal lobes!** development < 16 years → may not manifest until later
- 2) executive functions, interpersonal skills, ↓ spontaneity in interacting with others, ↓ higher learning level, ↓ attention, fatigue, ↓ planning, ↓ problem solving, ↓ daily decisions, ↓ initiative, ↓ flexibility, ↑impulsiveness, ↑ irritability, ↑ temper tantrums, ↑ opposition, ↑ persistence of a single thought, saying socially inappropriate things
- **3)** ↑ **difficulty in socialization** is associated with ↑ addictions to drugs and alcohol, ↑ risk of major depression, bipolar affective disorder, generalized anxiety disorder, borderline and avoidant personality disorders.
- 4) Normal /+ IQ after injury still can have profound problems!
- 5) TBI < 7years less likely recovery of IQ scores, ↑ impact on "fluid" intelligence skills</p>

## Injury of soft tissues



- 1) Thrombosis -7% of the EU pop. Leiden mutation
- 2) Infection: Pneumonia without injury 15% mortality > 65 years , ≤ 90% of all senior deaths (Topinková, 2005). Imunosupression, sinusitis, open head injury, genetics
- 3) Pneumothorax spontaneous: asthma, COPD, smoking, chronic cough, alpha 1 antitripsin deficiency and emphysema (genetic predispositions)
- 4) Hollow organs: full urinary bladder, gastro-duodenal ulcers, diverticulosis
- **5) Healing of wounds:** tetanus vaccination, desinfection, hydrocolloids, blood circulation, immunity systém support, cell proliferation, collagen production and antioxidant capacity vitamin C, E, A, zinc, glutathione, proteins etc.


#### **Fractures**

**Lower skeleton resistance** (women and elderly, risk factors of osteopenia) → ↑ injuries to internal organs and nerves, crash with a fixed object →↑ risk of dying

- 1) Injury of the spine and spinal cord
- 2) Femoral neck fractures binding-type pedals

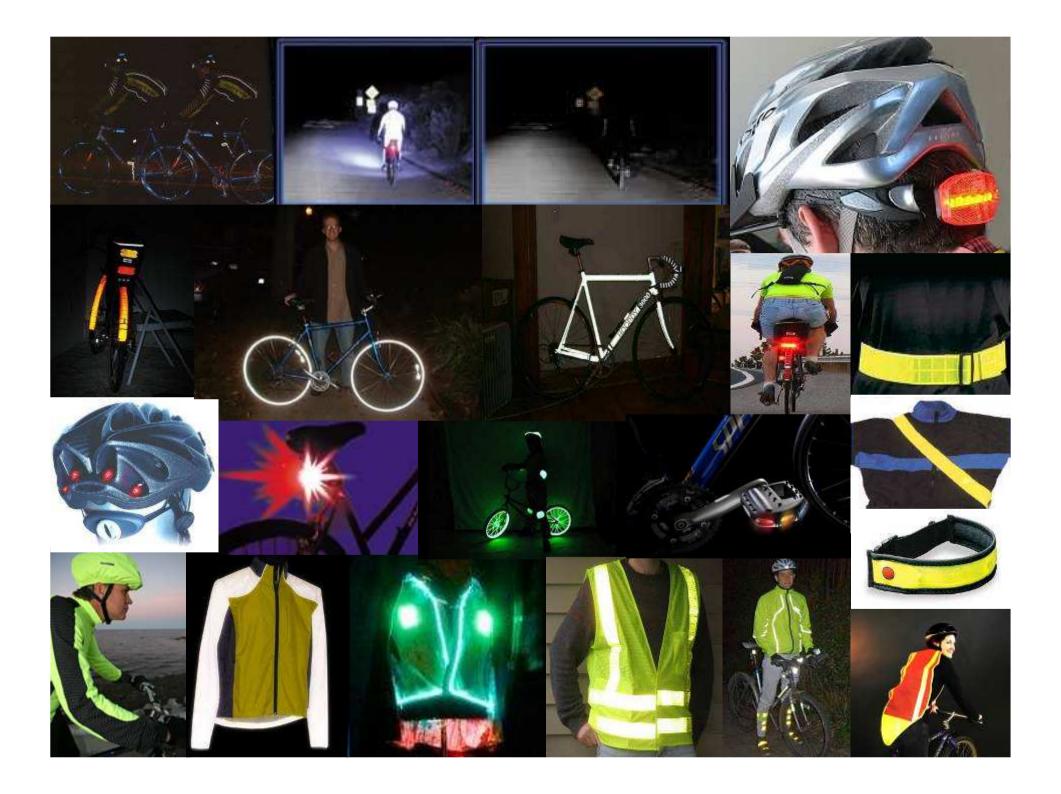


## Conclusions



# Separation




- Motor vehicle accidents with involvement of cyclists = the most serious cycling collisions and the biggest reason why people are afraid to use a bicycle
- 2) Population is getting older = more visual and cognitive problems in traffic in the future, ↑ fatality



 Need for improved road and city planning to separe bicyclists from motor vehicles.

# Necessity of being seen in time

- 1) Population is getting older
- 2) Vision and cognitive impairments
- 3) More time for driver to react:
  - 1) speed limits
  - 2) using lights and reflexive materials
  - 3) never expect proper behaviour from others
- **4)** Reflexive material 3x ↑ distance than white clothes, 10x ↑ than dark clothes in the night
- 5) Light ≤ 200m. Intermittent red light better effect in attracting driver's attention, even during daylight within rush hours



#### **Helmets**

- 1) No helmet protect against impact with a motor vehicle on the road!
- 2) ↓ TBI, even during the impact with motor vehicle, is of ↑↑↑ significance
- 3) Helmet → ↓ **TBI** risk **40 85** %
- 4) Safe helmet construction X rotational accelerations Helmet shell - as smooth as possible and hard, with fewer openings, round, symmetric, well fixed and fitting on the head (Andersson, 1993; Hansen, 2003), fibre-reinforced plastic (FRP) - energy absorbtion - ↑ inner shell deformation
  - Padding materials plastic (Beusenberg, 1995)
- 5) Helmet use ↓↓↓: 11 -19 years (31%) and 30 39 years (30%) "uncomfortable", "annoying", "it's hot", "don't need it" and "don't own one" significantly influence peer helmet use, parents and friends (Finnoff, 2001; Gielen, 1994; Sissons, 1994) ↑↑↑: cities, > 50 years (Finnoff, 2001), higher education, better socio-economic status (Macknin, 1994)
- 6) Lack of public education

### Thank You for Your attention



dana.manaskova@volny.cz